PENENTUAN SISTER CITY UNTUK PEMBENTUKAN DIAGRAM TIMBANG DI NUSA TENGGARA TIMUR DENGAN ALGORITMA K-MEANS

Penulis

  • Putu Dita Pickupana Badan Pusat Statistik Provinsi NTT
  • Putu Hadi Purnama Jati Badan Pusat Statistik Provinsi NTT
  • Muhamad Sukin

DOI:

https://doi.org/10.5300/jstar.v1i2.22

Kata Kunci:

inflation rate, sister city, machine learning, basket of goods, K-means algorithm

Abstrak

The Consumer Price Index (IHK) is a value that calculates changes in the weighted average price of goods and services consumed by households and serves as the basis for the BPS-Statistics to calculate inflation. Weighting data from the BPS-Statistics cost of living survey (SBH) is one of the components required to explain and demonstrate the dynamics of the IHK. SBH is held in several cities due to the limited resources to conduct this survey. As a solution, the sister city approach is adopted by BPS-Statistics to estimate the consumer price index for cities that are not part of the cost-of-living survey domain. The sister city approach uses weighting data from a city that held SBH with similar consumption patterns and is located geographically close to each other. Although the appointment of a sister city went through several procedures, there was no existing method to measure how similar a city is to another city based on the sister city definition. In this paper, we will use machine learning to analyze the similarity of cities in Nusa Tenggara Timur based on their consumption patterns, and as a result, the decision to appoint a sister city will be more accurate. Machine learning is a field of artificial intelligence (AI) and computer science that uses data and algorithms to mimic how people learn and progressively increase its accuracy. Machine learning methods will support the sister city approach with scientific reasoning to produce more accurate inflation. The result of the clustering based on the elbow method for K-means shows that Kupang city has a unique characteristic which means there is no similarity with the other cities in Nusa Tenggara Timur. However, other cities grouped into two cluster where the two inflation cities (Maumere and Waingapu) are not in the same cluster.

Referensi

Alpaydin, E. (2020). Introduction to Machine Learning, Fourth Edition. https://mitpress.mit.edu/books/introduction-machine-learning-fourth-edition

Badan Pusat Statistik. (2015). Pedoman Penyusunan Diagram Timbang Dan Pengolahan Indeks Harga Konsumen Untuk Kabupaten/Kota Non Survei Biaya Hidup 2012.

Badan Pusat Statistik. (2017). PENGHITUNGAN INFLASI KABUPATEN LAMONGAN TAHUN 2017 DENGAN PENDEKATAN SISTER CITY. https://lamongankab.bps.go.id/news/2018/01/31/23/penghitungan-inflasi-kabupaten-lamongan-tahun-2017-dengan-pendekatan-sister-city--.html

Bank Indonesia. (n.d.). Apa Itu Inflasi. Retrieved October 29, 2021, from https://www.bi.go.id/id/fungsi-utama/moneter/inflasi/default.aspx

Diacon, P.-E., & Maha, L.-G. (2015). The Relationship between Income, Consumption and GDP: A Time Series, Cross-Country Analysis. Procedia Economics and Finance, 23(October 2014), 1535–1543. https://doi.org/10.1016/s2212-5671(15)00374-3

Hermawati, F. A. (2013). Data Mining. In Data Mining. Penerbit ANDI.

Kholis, A. M., & Ferdian, A. (2019). Pengaruh Faktor-Faktor Ekonomi Terhadap Inflasi di Indonesia. JIM UPB (Jurnal Ilmiah Manajemen Universitas Putera Batam), 7(1), 1. https://doi.org/10.33884/jimupb.v7i1.900

Li, Y., & Wu, H. (2012). A Clustering Method Based on K-Means Algorithm. Physics Procedia, 25, 1104–1109. https://doi.org/10.1016/j.phpro.2012.03.206

Mintz, Y., & Brodie, R. (2019). Introduction to artificial intelligence in medicine. Minimally Invasive Therapy and Allied Technologies, 28(2), 73–81. https://doi.org/10.1080/13645706.2019.1575882

Muningsih, E. (2017). OPTIMASI JUMLAH CLUSTER K-MEANS DENGAN METODE ELBOWUNTUK PEMETAAN PELANGGAN (pp. 105–114).

Roihan, A., Sunarya, P., & Rafika, A. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. IJCIT (Indonesian Journal on Computer and Information Technology), 5. https://doi.org/10.31294/ijcit.v5i1.7951

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3(3), 210–229. https://doi.org/10.1147/rd.33.0210

Tim Pelaksana Kelompok Kerja Nasional TPID. (2014). Buku Petunjuk TPID. 39.

Windarto, A. P. (2017). Penerapan Data Mining Pada Ekspor Buah-buahan Menurut Negara Tujuan Menggunakan K-Means Clustering. Journal Tekonologi Informasi: Techno.COM, No. 4, 16(348–357).

Diterbitkan

31-12-2021

Cara Mengutip

Pickupana, P. D., Jati, P. H. P., & Sukin, M. (2021). PENENTUAN SISTER CITY UNTUK PEMBENTUKAN DIAGRAM TIMBANG DI NUSA TENGGARA TIMUR DENGAN ALGORITMA K-MEANS. Jurnal Statistika Terapan (ISSN 2807-6214), 1(2), 14–24. https://doi.org/10.5300/jstar.v1i2.22

Terbitan

Bagian

Daftar Isi Artikel