CLUSTERING POTENSI PADI DI PROVINSI NUSA TENGGARA TIMUR MENGGUNAKAN STANDARD K-MEANS DAN TRAJECTORY K-MEANS
DOI:
https://doi.org/10.64930/jstar.v5i2.134Kata Kunci:
Clustering, K-Means, Trajectory, Rice, Production, Harvested Area, NTTAbstrak
The Agricultural sector is the mainstay of the economy of East Nusa Tenggara, contributing 28,87 percent to the regional GDP in 2024. Of this amount, the food crop sub-sector contributed 22,94 percent, demonstrating the strategic role of food commodities in the regional economic structure. Rice, as the main staple food of the community, has high economic and social value because it directly affects food security and the welfare of the population. This study aims to cluster districts/cities in NTT based on rice potential using Standard K-Means and Trajectory K-Means methods, utilizing indicators such as harvested area and production. The analysis results show that the optimal number of clusters is four. The evaluation shows that Standard K-Means produces better grouping quality, while Trajectory K-Means remains relevant for identifying patterns of change over time. These findings confirm that region grouping based on rice potential can be the basis for more effective, efficient, and sustainable policy-making in strengthening the food sector in NTT.
Unduhan
Referensi
Arini, E. R. (2023). Penerapan K-Means Cluster di Provinsi Jawa Timur. Journal of Science Nusantara, 3(1), 32 - 36.
Baltagi, B. H. (2025). Econometric Analysis of Panel Data, Third edition. John Wiley & Sons Ltd.
Bonhomme, S., & Manresa, E. (2015). Grouped patterns of heterogeneity in panel data. The Econometric Society, 82(3), 1147–1184.
Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3(1), 1 - 27. https://doi.org/https://doi.org/10.1080/03610927408827101.
Christiani, N. V. (2024). Analisis Dearah Potensi Produksi Padi Di Provinsi Nusa Tenggara Timur Menggunakan K-Means Cluster. Jurnal Statistik Terapan, 4(1), 1-11.
Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224 - 227. https://doi.org/https://doi.org/10.1109/TPAMI.1979.4766909.
Direktorat Statistik Kesejahteraan Rakyat. (2023). Konsep dan Definisi SUSENAS Maret 2024. Badan Pusat Statistik.
Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Dalam J. MacQueen, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (hal. 1967). University of California Press.
Ray, S., & Turi, R. (1999). Determination of number of clusters in k-means clustering and application in colour image segmentation. Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques.
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(1), 53 - 65. https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7.
Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating The Number of Clusters in a Data Set Via The Gap Statistic. Journal Of The Royal Statistical Society: Series B, 63(2), 411 - 423. https://doi.org/10.1111/1467-9868.00293.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Jurnal Statistika Terapan (ISSN 2807-6214)

Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.


