Penerapan Cophenetic Correlation pada Pemilihan Metode Pembentukan Dendrogram untuk Mengelompokkan Alat Kontrasepsi Peserta KB Aktif dengan Pendekatan Bottom-Up
Studi pada Level Kabupaten/Kota di Provinsi NTT Tahun 2023
DOI:
https://doi.org/10.5300/jstar.v4i2.66Kata Kunci:
Alat Kontrasepsi, Program KB, NTT, Pendekatan Bottom-Up, Cophenetic CorrelationAbstrak
NTT merupakan provinsi dengan pertumbuhan penduduk dan angka kelahiran yang tergolong tinggi. Pertumbuhan penduduk dan angka kelahiran yang tinggi dapat menghambat pembangunan. Oleh karena itu, pemerintah menginisiasi program untuk membatasi angka kelahiran dan mengontrol laju pertumbuhan penduduk melalui program Keluarga Berencana (KB). Namun, masih banyak pasangan usia subur (PUS) di NTT yang belum merasakan manfaat dan akses terhadap program KB. Oleh karena itu, penelitian ini bertujuan untuk mengelompokkan kabupaten/kota di NTT berdasarkan alat kontrasepsi peserta KB aktif. Penelitian ini menerapkan pendekatan bottom-up dengan koefisien cophenetic correlation sebagai dasar pemilihan metode pembentukan dendrogram. Dari hasil penelitian, metode average linkage dengan koefisien cophenetic correlation sebesar 0,884 merupakan metode terbaik dalam menghasilkan dendrogram. Penelitian menghasilkan 4 klaster optimal yaitu 1 kabupaten/kota yang tergabung dalam klaster 1, 3 kabupaten/kota yang tergabung dalam klaster 2, 2 kabupaten/kota yang tergabung dalam klaster 3, dan 16 kabupaten/kota yang tergabung dalam klaster 4. Klaster 4 memiliki karakteristik penggunaan seluruh alat kontrasepsi yang rendah, bahkan sangat rendah sehingga dikategorikan sebagai daerah prioritas untuk intervensi pemerintah dalam program KB.
Referensi
Azam, M., Khan, H. N., & Khan, F. (2020). Testing Malthusian’s and Kremer’s Population Theories in Developing Economy. International Journal of Social Economics, 47(4), 523–538. https://doi.org/10.1108/IJSE-08-2019-0496
Bishop, C. M. (2006). Pattern Recognition and Machine Learning (1st ed.). Springer. https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
BKKBN. (2017, May 30). Pelayanan KB. Badan Kependudukan Dan Keluarga Berencana Nasional. https://kampungkb.bkkbn.go.id/kampung/1381/intervensi/45128/pelayanan-kb
BPK. (2022). Peraturan Gubernur Nusa Tenggara Timur Nomor 71 Tahun 2022 tentang Roadmap dan Rencana Aksi Daerah Percepatan Penurunan Stunting, Angka Kematian Ibu dan Angka Kematian Bayi di Provinsi Nusa Tenggara Timur Tahun 2022-2023. Badan Pemeriksa Keuangan Republik Indonesia.
BPS. (2019, September 25). Persentase Unmet Need KB (Kebutuhan Keluarga Berencana/KB Yang Tidak Terpenuhi) Menurut Provinsi (Persen), 2012-2017. Badan Pusat Statistik.
BPS. (2023a). Penduduk, Laju Pertumbuhan Penduduk, Distribusi Persentase Penduduk, Kepadatan Penduduk, Rasio Jenis Kelamin Penduduk Menurut Provinsi, 2023. Badan Pusat Statistik .
BPS. (2023b, March 31). Angka Kelahiran Total / Total Fertility Rate (TFR) Menurut Provinsi, 1971-2020. Badan Pusat Statistik.
Cabezas, L. M. C., Izbicki, R., & Stern, R. B. (2023). Hierarchical Clustering: Visualization, Feature Importance and Model Selection. Applied Soft Computing, 141, 110303. https://doi.org/10.1016/j.asoc.2023.110303
Cheng, H., Luo, W., Si, S., Xin, X., Peng, Z., Zhou, H., Liu, H., & Yu, Y. (2022). Global Trends in Total Fertility Rate and Its Relation to National Wealth, Life Expectancy and Female Education. BMC Public Health, 22(1), 1346. https://doi.org/10.1186/s12889-022-13656-1
Gere, A. (2023). Recommendations for Validating Hierarchical Clustering in Consumer Sensory Projects. Current Research in Food Science, 6, 100522. https://doi.org/10.1016/j.crfs.2023.100522
Iis, Yahya, I., Wibawa, G. N. A., Baharuddin, Ruslan, & Laome, L. (2022). Penggunaan Korelasi Cophenetic untuk Pemilihan Metode Cluster Berhierarki pada Mengelompokkan Kabupaten/Kota berdasarkan Jenis Penyakit di Provinsi Sulawesi Tenggara Tahun 2020. Prosiding Seminar Nasional Sains Dan Terapan VI, 6, 1–16.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning. Springer US. https://doi.org/10.1007/978-1-0716-1418-1
Kaufman, L., & Rousseeuw, P. J. (2008). Finding Groups in Data: An Introduction to Cluster Analysis (1st ed.). Wiley. https://doi.org/10.1002/9780470316801
Kominfo. (2019, September 27). Kontrasepsi Tepat Indonesia Sehat, Meningkatkan Pelayanan KB dan Kesehatan Reproduksi Guna Mencapai Indonesia Sehat. Kementerian Komunikasi Dan Informatika Republik Indonesia.
Musfiani, M. (2019). Analisis Cluster dengan Menggunakan Metode Partisi pada Pengguna Alat Kontrasepsi di Kalimantan Barat. Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya, 8(4). https://doi.org/10.26418/bbimst.v8i4.36584
Pratiwi, S. I., Widiharih, T., & Hakim, A. R. (2019). Analisis Klaster Metode Ward dan Average Linkage dengan Validasi Dunn Index dan Koefisien Korelasi Cophenetic (Studi Kasus: Kecelakaan Lalu Lintas Berdasarkan Jenis Kendaraan Tiap Kabupaten/Kota di Jawa Tengah Tahun 2018). Jurnal Gaussian, 8(4), 486–495. https://doi.org/https://doi.org/10.14710/j.gauss.8.4.486-495
Sahri, A. E., Utami, W. D., & Hamid, A. (2024). Implementasi K-Medoids Clustering Dalam Pengelompokkan Jenis Alat Kontrasepsi Berdasarkan Kecamatan di Kabupaten Sidoarjo. Jurnal Ilmiah Komputasi, 23(2). https://doi.org/10.32409/jikstik.23.2.3567
Sari, P. P., & Kismiantini, K. (2022). Pengelompokkan Kecamatan Berdasarkan Alat Kontrasepsi Menggunakan Algoritma K-Means. Seminar Nasional Official Statistics, 2022(1), 723–730. https://doi.org/10.34123/semnasoffstat.v2022i1.1134
Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., & Liu, J. (2021). A Quantitative Discriminant Method of Elbow Point for The Optimal Number of Clusters in Clustering Algorithm. EURASIP: Journal on Wireless Communications and Networking, 2021(1), 31. https://doi.org/10.1186/s13638-021-01910-w
Tan, P.-N., Steinbach, M., & Kumar, V. (2021). Introduction to Data Mining (2nd ed.). Pearson Addison Wesley.
WHO. (2024). Unmet Need for Family Planning (%). World Health Organization. https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3414
Wright, K. (2022). Will the Real Hopkins Statistic Please Stand Up? The R Journal, 14(3), 282–292. https://doi.org/10.32614/RJ-2022-055
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Statistika Terapan (ISSN 2807-6214)
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.