Eksplorasi Ketimpangan dan Klasterisasi Pembangunan Manusia di Provinsi Nusa Tenggara Timur
Kata Kunci:
Coefficient Variation, Human Development Index, Inequality, K-means Clustering.Abstrak
The Human Development Index (HDI) is a crucial metric for assessing multidimensional regional development quality. Nusa Tenggara Timur Province (NTT) has one of the lowest HDI scores in Indonesia, reflecting persistent challenges in education, health, and economic conditions. This study examines HDI disparities in NTT and classifies its regencies/municipality using Coefficient Variation (CV) and K-means clustering. CV quantifies inequality among regencies/municipality, while K-means clustering segments regions based on HDI patterns. The novelty of this study lies in integrating CV analysis with K-means clustering, providing a more comprehensive approach to understanding HDI disparities. This combined method allows for a more detailed classification of regions, offering insights for more targeted policy interventions. The findings reveal a decline in HDI disparity from 2020 to 2024, primarily driven by improvements in the living standard dimension. However, significant gaps persist, particularly in education and health accessibility. The clustering analysis identifies four distinct regional groups: (1) "Healthy and Educated Regions" with high life expectancy and schooling rates, (2) "Underdeveloped Regions" with low scores across all HDI components, (3) "Educated Regions" with strong educational indicators but weaker health and income levels, and (4) "Developed Regions" exhibiting high scores across all HDI dimensions. Addressing disparities in the living standard dimension remains a key strategy for fostering equitable human development in NTT.
Referensi
Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The K-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics, 9(8), 1295. https://doi.org/10.3390/electronics9081295
Alfons, M. E., Nursini, ., & Rahman, A. R. (2024). Government Expenditure, Human Development Index and Regional Inequality in Indonesia. Journal of Ecohumanism, 3(7). https://doi.org/10.62754/joe.v3i7.4589
Ankireddypalli, O., Arella, M., Gujjula, S., & Jayan, S. (2024). A Clustering Approach on Unveiling Global Development Disparities. 2024 5th International Conference on Circuits, Control, Communication and Computing (I4C), 292–298. https://doi.org/10.1109/I4C62240.2024.10748509
Aryasatya, R., & Lusiana, V. (2024). Penentuan Klustering Indeks Pembangunan Manusia Provinsi Jawa Tengah dengan Metode K-means Berbasis Web. Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 8(1), 155–162. https://doi.org/10.35870/jtik.v8i1.1403
Badan Pusat Statistik. (2024). Indeks Pembangunan Manusia 2023.
Badan Pusat Statistik Provinsi Nusa Tenggara Timur. (2025). Laporan Bulanan Data Sosial Ekonomi Provinsi Nusa Tenggara Timur Desember 2024.
Fahmiyah, I., & Ningrum, R. A. (2023). Human Development Clustering in Indonesia: Using K-means Method and Based on Human Development Index Categories. Journal of Advanced Technology and Multidiscipline, 02, 27–33.
Farkhati, I. F. (2024). Social Inequality and Access to Education: Structural Analysis in Indonesia. https://doi.org/10.31235/osf.io/8cybx
Jalilibal, Z., Amiri, A., Castagliola, P., & Khoo, M. B. C. (2021). Monitoring the coefficient of variation: A literature review. Computers & Industrial Engineering, 161, 107600. https://doi.org/10.1016/j.cie.2021.107600
Kenneth, H., & Stephan, K. (2010). A Household-Based Human Development Index. Social Science Research Network.
Kenneth, H., & Stephan, K. (2011). A Human Development Index at the Household Level. Research Papers in Economics.
Khan, A. R., & Riskin, C. (2001). Gender, Health, and Education Human Development Dimensions of Inequality. Inequality and Poverty in China in the Age of Globalization (hlm. 81–102). Oxford University PressNew York, NY. https://doi.org/10.1093/oso/9780195136494.003.0005
Kovjanić, A. (2024). The human development index as an indicator of regional development and inequality in Serbia. Zbornik radova – VI Kongres geografa Srbije sa medunarodnim ucešcem - zbornik radova, 356–364. https://doi.org/10.5937/KonGef24040K
Kula, M. C., Moyer, Jr. , C. J., & Panday, P. (2025). The Sensitivity of the Human Development Index to Assumptions about Income. Journal of Economic Analysis, 4(1), 192–213. https://doi.org/10.58567/jea04010010
Larasati, S. D. A., Nisa, K., & Herawati, N. (2021). Robust Principal Component Trimmed Clustering of Indonesian Provinces Based on Human Development Index Indicators. Journal of Physics: Conference Series, 1751, 012021. https://doi.org/10.1088/1742-6596/1751/1/012021
Mangaraj, B. K., & Aparajita, U. (2020). Constructing a generalized model of the human development index. Socio-Economic Planning Sciences, 70, 100778. https://doi.org/10.1016/j.seps.2019.100778
Mariskhana, K., Sintawati, I. D., & Widiarina, W. (2024). Exploring Regional Development Patterns using Machine Learning: A Python-based Clustering Analysis of Human Development Index in West Java. Sinkron, 8(2), 671–678. https://doi.org/10.33395/sinkron.v8i2.13561
Martínez, R. (2016). Inequality Decomposition and Human Development. Journal of Human Development and Capabilities, 17(3), 415–425. https://doi.org/10.1080/19452829.2016.1155544
Nag, A., & Pradhan, J. (2023). Does club convergence matter? Empirical evidence on inequality in the human development index among Indian states. Humanities and Social Sciences Communications, 10(1), 25. https://doi.org/10.1057/s41599-023-01518-z
Nofiana Erwanti, N., Wahyunadi, W., & Mahmudi, H. (2023). The Influence of Regional Expenditure In The Education, Health, And Investment Sectors On The Human Development Index In Eastern Indonesia Region. Return : Study of Management, Economic and Bussines, 2(6), 543–558. https://doi.org/10.57096/return.v2i06.110
Permanyer, I., & Smits, J. (2020). Inequality in Human Development across the Globe. Population and Development Review, 46(3), 583–601. https://doi.org/10.1111/padr.12343
Prawesti Ningrum, E., M, S., Endah Nursyamsi, S., & Siregar, N. (2024). Faktor Terkait Kesenjangan Ekonomi dan Kesejahteraan. PRIVE: Jurnal Riset Akuntansi dan Keuangan, 7(2), 116–126. https://doi.org/10.36815/prive.v7i2.3480
Qori’atunnadyah, M. (2023). Fuzzy C-Means for Regional Clustering in East Java Province Based on Human Development Index Indicators. J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika, 16(2), 524–534. https://doi.org/10.36456/jstat.vol16.no2.a8240
Shahzad, U., Ahmad, I., García-Luengo, A. V., Zaman, T., Al-Noor, N. H., & Kumar, A. (2023). Estimation of Coefficient of Variation Using Calibrated Estimators in Double Stratified Random Sampling. Mathematics, 11(1), 252. https://doi.org/10.3390/math11010252
Wang, X., Shen, A., Hou, X., & Tan, L. (2022). Research on cluster system distribution of traditional fort-type settlements in Shaanxi based on K-means clustering algorithm. PLOS ONE, 17(3), e0264238. https://doi.org/10.1371/journal.pone.0264238
Warolemba, Moh. W., Resmawan, R., & Isa, D. R. (2023). Analisis Cluster Fuzzy C-Means dan Diskriminan untuk Pengelompokan Data Kesejahteraan Rakyat. Sainsmat : Jurnal Ilmiah Ilmu Pengetahuan Alam, 12(2), 141. https://doi.org/10.35580/sainsmat122446492023
Zhang, X., Xu, J., Zhong, S., & Wang, Z. (2024). Assessing Uneven Regional Development Using Nighttime Light Satellite Data and Machine Learning Methods: Evidence from County-Level Improved HDI in China. Land, 13(9), 1524. https://doi.org/10.3390/land13091524
Ziganshin, I. I., & Serebryakova, T. Yu. (2023). Balanced Development Of The Region As A Subject Of Risk Factors. Oeconomia et Jus, 2, 10–18. https://doi.org/10.47026/2499-9636-2023-2-10-18

Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Jurnal Statistika Terapan (ISSN 2807-6214)

Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.